Dynamics in the presence of attractive patchy interactions.
نویسندگان
چکیده
We report extensive Monte Carlo and event-driven molecular dynamics simulations of a liquid composed of particles interacting via hard-sphere interactions complemented by four tetrahedrally coordinated short-range attractive ("sticky") spots, a model introduced several years ago by Kolafa and Nezbeda (Kolafa, J.; Nezbeda, I. Mol. Phys. 1987, 87, 161). To access the dynamic properties of the model, we introduce and implement a new event-driven molecular dynamics algorithm suited to study the evolution of hard bodies interacting, beside the repulsive hard-core, with a short-ranged interpatch square well potential. We evaluate the thermodynamic properties of the model in deep supercooled states, where the bond network is fully developed, providing evidence of density anomalies. Different from models of spherically symmetric interacting particles, the liquid can be supercooled without encountering the gas-liquid spinodal in a wide region of packing fractions phi. Around an optimal phi, a stable fully connected tetrahedral network of bonds develops. By analyzing the dynamics of the model we find evidence of anomalous behavior: around the optimal packing, dynamics accelerate on both increasing and decreasing phi. We locate the shape of the isodiffusivity lines in the (phi - T) plane and establish the shape of the dynamic arrest line in the phase diagram of the model. Results are discussed in connection with colloidal dispersions of sticky particles and gel-forming proteins and their ability to form dynamically arrested states.
منابع مشابه
Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملMolecular Dynamics Simulation and Free Energy Studies on the Interaction of Salicylic Acid with Human Serum Albumin (HSA)
Human serum albumin (HSA) is the most abundant protein in the blood plasma. Molecular dynamics simulations of subdomain IIA of HSA and its complex with salicylic acid (SAL) were performed to investigate structural changes induced by the ligand binding. To estimate the binding affinity of SAL molecule to subdomains IB and IIA in HSA protein, binding free energies were calculated using the Molecu...
متن کاملThree new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...
متن کاملThree new scorpion chloride channel toxins as potential anti-cancer drugs: Computational prediction of the interactions with hMMP-2 by docking and Steered Molecular Dynamics Simulations
Scorpion venom is a rich source of toxins which have great potential to develop new therapeutic agents. Scorpion chloride channel toxins (ClTxs), such as Chlorotoxin selectively inhibit human Matrix Methaloproteinase-2 (hMMP-2). The inhibitors of hMMP-2 have potential use in cancer therapy. Three new ClTxs, meuCl14, meuCl15 and meuCl16, derived from the venom transcriptome of Iranian scorpion, ...
متن کاملEntropically patchy particles: engineering valence through shape entropy.
Patchy particles are a popular paradigm for the design and synthesis of nanoparticles and colloids for self-assembly. In "traditional" patchy particles, anisotropic interactions arising from patterned coatings, functionalized molecules, DNA, and other enthalpic means create the possibility for directional binding of particles into higher-ordered structures. Although the anisotropic geometry of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 15 شماره
صفحات -
تاریخ انتشار 2006